V EDIZIONE BIOSTIMOLANTI CONFERENCE 20 - 21 FEBBRAIO 2024

"Ruolo dei biostimolanti per contrastare stress multipli: salinità e alte temperature"

Albino Maggio University of Napoli Federico II, Italy Department of Agricultural Sciences almaggio@unina.it

Environmental Stresses: Major Factors for Yield Reduction

World map representing countries with salinity problems

Soil salinity affects nearly 50% of all irrigated land in the world (Fita, et al., 2015., *Front. Plant Sci.* 6, 978)

World map of saline soils

Legend

Saline soils equal or above 4 dS/m Soils below 4 dS/m Country borders (FAO/UNESCO Soil Map of the World)

(Pier Vellinga et al. (2019) - DOI: 10.1201/9781003112327-1)

5 000

10 000 Kilometers

Heat Stress (risk in Agriculture)

Industry adjusted (agriculture) heat stress risk scores for countries in current and future climate scenarios

Bubble size = % of agricultural production (2020)

Risk score (industry adjusted - agricultural products)

Sources: The Heat Stress (Current Climate) and Heat Stress (Future Climate) indices use global temperature data extracted from the UK Met Office Hadley Centre Earth System model, HadGEM2-ES for the periods representing current (1980-2000) and future (2026-2045) climates; FAOSTAT; Verisk Maplecroft

Biochemical changes Oxidative stress Altered metabolism

- High Na transport to shoot
- Lower K uptake
- Lower Zn and P uptake

Physiological changes

- Inhibition of photosynthesis
- Stomatal Closure
- Decreased water content
- Higher concentration of osmolytes
- Lower osmotic potential

Effects of salinity on plants

Morphological changes

- Poor root growth
- Leaf rolling
- Leaf tillering
- Chlorosis
- Leaf burning
- Stunted plant growth

Biomass and grain yield

- Spikelet sterility
- Less florets per panicle
- Less grain weight
- Less grain yield
- Low harvest index

Razzag et al., 2020. Journal of Food Science – Vol 85, Iss. 1

Effects of heat stress on plants

Review

Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics

MDPI

Jianguo Zhao ^{1,2,†}, Zhaogeng Lu ^{1,†}, Li Wang ¹ and Biao Jin ^{1,*}

Table 1

Role of DREBs in transgenic plants and abiotic stress response tolerance on plants.

Target	Species	Technique	Stress	Findings			Reference	
JfDREB1A AtCBF3	Arabidopsis Petunia hybrida	Overexpression Overexpression	Cold Cold	Enhanced survival Enhanced survival			(Han et al., 2022) (Walworth et al., 2013)	D
OsDREB1A	Rice	Overexpression	Cold	Retardated growth			(Ito et al., 2006)	
AtDREB1A	Tomato	Heterologous expression	Cold,	Improved growth			(Karkute et al., 2019)	
DREB2A	Wheat	Overexpression	Cold	Retardated growth	1	DDED	(Liu et al., 2022)	
GNDREB	Cotton	analysis	Cold, Drought, Heat	were identified.	drought-responsive, and 94 h	eat-responsive DREB genes	(Liu and Zhang, 2017)	
CoDREB	Camella Oleira	Transcriptome analysis	Drought,Cold	CoDREB1.2, 4.1, 4.4, 4. term drought, CoDREB responsive to short ter	8, 4.12, 4.15, 5.1, 5.3, 5.5, and 1.2, 4.1, 4.4, 4.8, 4.12, 4.15, 5 m drought	6.2 are responsive to long- 5.1, 5.3, 5.5, and 6.2 are	(Wang et al., 2023b)	
ScDREB2B- 1	Tobacco	Overexpression	Drought	ABA signaling, increas	ed ROS levels, and stress-relat	ed gene expression	(Chen et al., 2022)	
tDREB2	Cotton	Overexpression	Drought	Improve biomass, gase gene expression.	ous exchange, increased ROS	level, and stress-related	(El-Esawi and Alayafi, 2019)	
LbDREB6	Popular	Overexpression	Drought	Improve disease resista	ance		(Yang et al., 2020)	
RcDREB1	Tobacco	Overexpression	Drought	Improve growth and p	ollen viability		(do Rego et al., 2021)	
DREB1A	Soya bean	Overexpression	Drought	Enhanced water use ef	ficiency		(Billah et al., 2021)	
AUJKEDID	militiorrhiza	Overexpression	Drought	Modified water permea	ability in plant cens		2011)	
MsDREB6.2	Apple	Overexpression	Drought	Cytokinin-deficient de	velopmental phenotypes		(Liao et al., 2017)	
AtDREB1A	Chickpea, Peanut	Heterologous expression	Drought	Increase water absorpt	ion		(Anbazhagan et al., 2014)	t Sti
ScDREB2B- 1	Tobacco	Overexpression	Drought	Modified physiological stress response	and biochemical parameters	and the expression of the	(Chen et al., 2022)	
StDREB1	Potato	Overexpression	Salt	Broad leaves, necrotic	tumor		(El-Esawi and Alayafi, 2019)	Str
GmDREB1	Wheat	Overexpression	Drought, Salt	Deeper roots, increase	l weight		(Jiang et al., 2017)	
NnDREB2	Arabidopsis	Overexpression	Salt	High germination rates	s, improved root development		(Cheng et al., 2015)	
LbDREB	Popular	Overexpression	Salt	Improve relative leaf v	vater content, Membrane stabi	ility	(Zhao et al., 2018)	
GhDBP1	Arabidopsis	Overexpression	Salt	Decreased expression of	of stress-induced gene		(Dong et al., 2010)	
EcDREB2A DREB2	Tobacco Arabidopsis	Overexpression Overexpression	Heat Heat	ROS scavenging Growth and developme	ent		(Singh et al., 2021) (Sakuma et al., 2006)	
SIDREBA4	Tomato	Overexpression	Heat	Osmolvte adjustment,	expression of heat shock prote	ein	(Mao et al., 2020)	
CmDREB6	Chrysanthemum	Overexpression	Heat	Control the expression	of genes involved in heat sho	ck response.	(Du et al., 2018)	
AtDREB1A	Salvia	Overexpression	Drought	Lower concentration o	f MDA. a higher concentration	n of CAT. POD. and SOD	(Muthuraian et al	
SlDREBA4 Tomato		ato	Overexp	verexpression Heat Osmolyte adju		Osmolyte adjust	ment, expressi	ion of heat s
CmDREB6 Chrysanthemum		santhemum	Overexp	Overexpression Heat		Control the expression of genes involved		es involved i
AtDRED1A Cabria		<i>a</i>	Overovr	raccion	Drought	Lower concentr	ation of MDA	a higher ea

esponses and **lechanisms**

ress: Pollen fertility ess: Ion homeostasis

shock protein in heat shock response. Lower concentration of MDA, a higher concentration of CAT, POD, and SOD AWKEBIA Saivia Overexpression Drought miltiorrhiza

(Mao et al., 2020) (Du et al., 2018) (Muthurajan et al., 2021)

_ _ _ _ ,

Various DREB gene targets, the plant species expressing these genes, and the stress mitigated are highlighted in the above table. The results achieved in these experiments are also shown along the references for more information.

Role of biostimulants

Biostimulants Functions

S. Mandal et al.

Environmental Research 233 (2023) 116357

BIOSTIMULANTS for SALT STRESS

Use of a Biostimulant to Mitigate Salt Stress in Maize Plants

by ৪ Roberto D'Amato * 🖂 💿 and 😣 Daniele Del Buono 🖂 回

Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy

Author to whom correspondence should be addressed.

Agronomy 2021, 11(9), 1755; https://doi.org/10.3390/agronomy11091755 Received: 19 July 2021 / Revised: 24 August 2021 / Accepted: 28 August 2021 /

Published: 31 August 2021

- Reduced content of sodium in plant tissue
- Increased content of total chlorophyll
- Increased shoot biomass and root biomass
- Reduced content of hydrogen peroxide and malondialdehyde
 complex of vitamines.

Effect of salinity and Megafol (biostimulant) on root length. Mean with different letters are statistically different according to Duncan's Post Hoc (p < 0.05).

complex of vitamines, aminoacids, proteins, betains and growth factors

REGULAR ARTICLE

Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants

Andrea Ertani • Michela Schiavon • Adele Muscolo • Serenella Nardi

Received: 29 March 2012 / Accepted: 25 June 2012 / Published online: 11 July 2012 © Springer Science+Business Media B.V. 2012

- Decreased activity of antioxidant enzymes in leaves
- Increased plant biomass under salinity conditions
- Increase level of K⁺

Catalase (CAT) activity in leaves of *Z. mays* plants under different salinity (0, 25, 75, 150) and bio-stimulant (EM) conditions. Mean with different letters are statistically different according to Duncan's Post Hoc (p < 0.05).

ORIGINAL RESEARCH published: 01 July 2022 doi: 10.3389/fpls.2022.837441

Sunflower Bark Extract as a Biostimulant Suppresses Reactive Oxygen Species in Salt-Stressed Arabidopsis

Jing Li¹, Philippe Evon², Stéphane Ballas³, Hoang Khai Trinh^{1,4}, Lin Xu^{1†}, Christof Van Poucke⁵, Bart Van Droogenbroeck⁵, Pierfrancesco Motti⁶, Sven Mangelinckx⁶, Aldana Ramirez¹, Thijs Van Gerrewey¹ and Danny Geelen^{1*}

- Reduced the production of ROS
- Preserved photosynthesis pigments
- Stabilized cell membrane
- Stimulated shoot growth

Salt stress alleviation of SBE treatment in the Arabidopsis true leaf assay. (A) The dynamic growth of leaf area from 3 DAG to 10 DAG..

Osmo-Priming with Seaweed Extracts Enhances Yield of Salt-Stressed Tomato Plants

by ⑧ Emilio Di Stasio [†] ⊠, ⑧ Valerio Cirillo ^{*,†} ⊠, ⑧ Giampaolo Raimondi ⊠, ⑧ Maria Giordano ⊠ ⁽¹⁰⁾, ⑧ Marco Esposito ⊠ and ⑧ Albino Maggio ⊠

Department of Agricultural Science, University of Napoli Federico II, Portici, 80055 Naples, Italy

* Author to whom correspondence should be addressed.

[†] These authors have contributed equally to this work.

Agronomy 2020, 10(10), 1559; https://doi.org/10.3390/agronomy10101559

Received: 9 September 2020 / Revised: 5 October 2020 / Accepted: 7 October 2020 / Published: 13 October 2020

- Osmolites content in both biostimulants (proline, mannitol, sorbitol)
- Higher allocation of biomass to roots
- Higher plant water use efficiency

The impact of biostimulants on the physiology and agricultural traits of crops under salt stress

Environmental Research 233 (2023) 116357

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Review article

Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change

Sayanti Mandal^{a,b,*,1}, Uttpal Anand^{c,1}, José López-Bucio^d, Radha^e, Manoj Kumar^f, Milan Kumar Lal^{g,h}, Rahul Kumar Tiwari^{g,h}, Abhijit Dey^{i,**}

Stenotrophomonas maltophilia BJ01	Peanut	low electrolyte leakage, lipid peroxidation, proline	Alexander et al. (2020)
		auxin and aa levels	(hydroponics – no yield)
Arthrobacter woluwensis (AK1) and more	Soybean	Higher antioxidant activity and reduced endogenous ABA level	Khan et al. (2019) (pot? – no yield)
Acinetobacter bereziniae, Enterobacter ludwigii	Pea	Enhanced levels of chlorophyll, proline, and total soluble sugars.	Sapre et al. (2022) (pot – 3-6% yield increase)
Pseudomonas oryzihabitans AXSa06	Tomato	Positive effects on photosynthetic parameters. Upregulation of genes implicated ethylene/ ABA production.	Mellidou et al. (2021) (pot? - no yield)
Trichoderma reesei	Wheat	Increases chlorophyll, carotenoids. mineral absorption (Ca and Reduction in ABA conc.	lkram et al. (2019) (pot? – no yield)
Aneurinibacillus aneurinilyticus, Paenibacillus sp.	Bean	Increase of growth regulating hormones (IAA) water and nutrients absorption	Gupta and Pandey (2019) (rev – no yield)
Porostereum spadiceum AGH786	Soybean	Improved seedling daidzein and genistein endogenous levels GAs and low ABA and JA	Hamayun et al. (2017) (pot – no yield)
Trichoderma Iongibrachiatum T6	Wheat	Decrease of malondialdehyde. In of RWC, chlorophyll proline	Zhang et al. (2016) (plastic boxes – no yield)
Protein hydrolysates	Lettuce	Improvement in plant nitrogen metabolism Ev/Em-ratio efficience	Lucini et al. (2015) (pot – yield unclear)

BIOSTIMULANTS for HEAT STRESS

Increased soybean tolerance to high-temperature through biostimulant based on *Ascophyllum nodosum* (L.) seaweed extract

Rodrigo Alberto Repke
 $^{1,3}\cdot$ Dayane Mércia Ribeiro Silva
^ \cdot Jania Claudia Camilo dos Santos
^ \cdot Marcelo de Almeida Silva²

Journal of Applied Phycology (2022) 34:3205–3218 https://doi.org/10.1007/s10811-022-02821-z

Received: 9 May 2022 / Revised and accepted: 11 August 2022 / Published online: 20 August 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Increased productivity

- Increased the rate of CO₂ assimilation, stomatal conductance, the rate of transpiration and carboxylation efficiency
- Increased antioxidant enzymes activity
- Reduced temperature leaf

Average temperature of 40 °C throughout the cycle until harvest

Ascophyllum nodosum Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set

Nicholas Carmody¹, Oscar Goñi¹, Łukasz Łangowski² and Shane O'Connell^{1*}

¹Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland, ²Research and Development Department, Brandon Bioscience, Tralee, Ireland

Front. Plant Sci., 25 June 2020

Sec. Crop and Product Physiology

Volume 11 - 2020 | https://doi.org/10.3389/fpls.2020.00807

- Increased flower development
- Increased pollen viability and fruit production
- Enhanced carbohydrate metabolism and

thermotolerance

Ascophyllum nodosum extracts (ANEs)

C129, an ANE obtained at low temperatures through a gentle extraction and the novel proprietary PSI-494 extracted under high temperatures and alkaline conditions.

MDPI

check for updates

Article

Transcriptome Analyses and Antioxidant Activity Profiling Reveal the Role of a Lignin-Derived Biostimulant Seed Treatment in Enhancing Heat Stress Tolerance in Soybean

Cristina Campobenedetto ^{1,2,†}, Giuseppe Mannino ^{1,†}, Chiara Agliassa ³, Alberto Acquadro ³, Valeria Contartese ², Christian Garabello ² and Cinzia Margherita Bertea ^{1,*}

Received: 15 September 2020; Accepted: 30 September 2020; Published: 2 October 2020

- Increase germination percentage;
- Few genes involved in stress response are upregulated;
- [H2O2] were significantly lower in the biostimulant-treated seeds.

	Untreated	Biostimulant-Treated	%Δ
24 h	n.d.	n.d.	-
48 h	68.80 ± 1.16 ^a	77.70 ± 0.58 ^b	$12.95\% \pm 1.06\%$
72 h	82.22 ± 0.58 ^a	91.13 ± 0.55 ^b	$10.84\% \pm 0.11\%$

Germination percentage of untreated and **biostimulant-treated soybean seeds incubated at 35°C** in the dark.

Effects of the application of the biostimulant on hydrogen peroxide (H_2O_2) level, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) enzymatic activity and on non-protein thiol content. Dashed-line=related untreated sample.

Seed priming with seaweed extract mitigate heat stress in spinach: effect on germination, seedling growth and antioxidant capacity

Antônio Pereira dos Anjos Neto¹*^(D), Gustavo Roberto Fonseca Oliveira²^(D), Simone da Costa Mell Marcio Souza da Silva⁴^(D), Francisco Guilhien Gomes-Junior³^(D), Ana Dionisia da Luz Coelho Nove Ricardo Antunes Azevedo⁵^(D)

- 1. Universidade Federal da Paraíba Centro de Ciências Agrárias Programa de Pós-Graduação em Agronomia Areia
- Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agronômicas Departamer Produção Vegetal – Botucatu (SP), Brazil.
- Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Departamento de Produção V Piracicaba (SP), Brazil.
- 4. Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agrárias e Veterinárias -Departamento de Produção Vegetal – Jaboticabal (SP), Brazil.
- 5. Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Departamento de Genética I (SP), Brazil.

- Seaweed extract increase germination speed and germination percentage
- Seaweed extract decrease H2O2
 levels

REGULAR ARTICLE

Improved heat stress tolerance of wheat seedlings by bacterial seed treatment

Islam A. Abd El-Daim • Sarosh Bejai • Johan Meijer

Heat stressed plants were exposed to a temperature of 45 °C.

- Bacterial treated plant showed higher survival rate.
- The expression of stress marker genes was lower in treated plants.
- Treatment with bacterial strains decreased Ascorbate peroxidase activity after heat exposure.
- Heat stress resulted in increased Dehydroascorbate
 reductase activity and Gluthatione reductase activity.

A second generation of biostimulant-based products with synergistic biostimulatory activity has been proposed

Article	PLOS	frontiers Frontiers in	Plant Science	TYPE Original Research PUBLISHED XX XX 2023	
Influer Biostin ELSEVIER Nutriti Adeyemi O. Fertiliser su	GOPEN ACCESS 🔌 PEEF			DOI 10.3389/fpls.2023.1304627	57 58 59 60 61
Christian P. Aloe vera e Agronom nutrient up 428; <u>http</u> Kimber Wise ^a Harsharn Gill	A plant bios Ascophyllum blight and r L. R. Gunupuru, J. S. Pa Published: September 1'	Check for updates CPEN ACCESS EDITED BY Günter Neumann, University of Hohenheim, Germany REVIEWED BY Juan Ignacio Vilchez Morillas, Universidade Nova de Lisboa, Portugal Dionysia Apostolos Fasoula, Agricultural Research Institute, Cyprus Mohamed Ait-El-Mokhtar, University of Hassan II Casablanca, Morocco	Inoculation with a consortium increa microbial diversity improves agronon tomato under wat nitrogen deficienc	microbial ses soil and nic traits of er and y	62 63 64 65 66 67 68 69 70 71 72 73 74
		 CORRESPONDENCE Valeria Ventorino ✓ valeria.ventorino@unina.it ¹These authors have contributed 	Valerio <mark>Cirillo</mark> ^{1†} , Ida <mark>Romano</mark> ^{1†} , Shei Emilio <mark>Di Stasio</mark> ¹ , Nadia <mark>Lombardi</mark> ¹ , Olimpia Pepe^{1.4}, Valeria <mark>Ventorino</mark>¹	ridan L. <mark>Woo</mark> ^{2,3,4} , Ernesto <mark>Comite¹,</mark> . ^{4*} and Albino Maggio ¹	74 Q2Q11 75 Q4 76 77

equally to this work and share

Review

Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review

Gargi Prasad Saradadevi ^{1,†}[®], Debajit Das ^{2,†}, Satendra K. Mangrauthia ^{3,†}[®], Sridev Mohapatra ^{1,†}, Channakeshavaiah Chikkaputtaiah ^{2,†}[®], Manish Roorkiwal ^{4,5,†}[®], Manish Solanki ³, Raman Meenakshi Sundaram ³[®], Neeraja N. Chirravuri ³[®], Akshay S. Sakhare ³, Suneetha Kota ^{3,*}, Rajeev K. Varshney ^{4,5,6,*}[®] and Gireesha Mohannath ^{1,*}[®]

Figure 1. A scheme of CRISPR/Cas mediated genome editing for salt tolerance in plants. CRELs: CRISPR Edited Lines. NLS: Nuclear Localization Signal (NLS can also be at the end of Cas9), OriC: Origin of Replication C, Ter: Terminator, Pol III P: Polymerase III promoter, GE0: Genome Edited Generation 0, GE1: Genome Edited Generation 1, GE2: Genome Edited Generation 2.

New Approaches/ Tools in Plant Biotech

- Loss of *RST1* Function Enhances Stress Tolerance by Improving Nitrogen Use and Na⁺/K⁺ homeostasis
- Loss of *RST1* function increases the expression of *OsAS1* and improves nitrogen (N) utilization by promoting asparagine production and **avoiding** excess ammonium (NH₄⁺) accumulation

Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase

Ping Deng^{*}, Wen Jing^{*1}, Chengjuan Cao[®], Mingfa Sun^b, Wenchao Chi^c, Shaolu Zhao^b, Jinying Dai^b, Xingyu Shi[®], Qi Wu^{*d}, Baolong Zhang^d, Zhuo Jin^{*}, Chunxia Guo^{*}, Quanxiang Tian^{*}, Like Shen^{*}, Jun Yu^c, Ling Jiang^e, Chunming Wang^c, Joong Hyoun Chin^{*}, Jingya Yuan[®], Qun Zhang^{*,1}, and Wenhua Zhang^{*,1}, Edited by Julian Schroeder, University of California San Diego, La Jolla, CA; received June 17, 2022; accepted October 13, 2022

 TABLE 1
 Functions of conversed miRNAs in plant growth, development, and abiotic stresses.

miRNAs	Targets	Functions in growth and development	Functions in abiotic stresses (heat, cold, drought and salt)
miR156*	SPLs;	Plant architecture (Jiao et al., 2010);	Heat stress memory (Stief et al., 2014);

OPEN ACCESS

EDITED BY Serena Varotto, University of Padua, Italy

REVIEWED BY

Jun Cui, Hunan Normal University, China Milan Skalicky, Czech University of Life Sciences Prague, Czechia Charu Lata, CSIR-National Institute of Science Communication and Policy Research, India Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance

Yingying Zhang^{1†}, Ye Zhou^{2†}, Weimin Zhu¹, Junzhong Liu^{2*} and Fang Cheng^{2*}

¹Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China, ²State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

Improving plant multiple stress tolerance wrap-up

- 1)Biostimulants success has capitalized on the gap left by transgene technology
- 2)The role of biostimulants as growth enhancers has been now established – products are available on the market
- 3) More can be done to elucidate the role of biostimulants as stress protectants (and growth enhancers)
- 4)Gene editing of regulatory molecules (epigenetics) can likely lead to a new wave of technical solutions for improving plant multiple stress tolerance

Matching Biostimulants Mode of Action With Key Mechanisms of Salt Stress Tolerance

Drought

Matching Biostimulants Mode of Action With Key Mechanisms of Heat Stress Tolerance

Conclusions

- Biostimulants are an important turning point in crop stress protection
- We have learned a lot from research on plant stress adaptation and first-generation GM plants and modern biotech
- Biostimulants have great(er) potential compared to other technologies
- A systematic scientific approach to understand the mechanism of action of biostimulants is deemed necessary to define and fully exploit the potential value of promising eco-compatible molecules
- Modelling can help for a reasoned selection of most performant biostimulants

Thank you almaggio@unina.it

